Kernel density compression for real-time Bayesian encoding/decoding of unsorted hippocampal spikes
نویسندگان
چکیده
To gain a better understanding of how neural ensembles communicate and process information, neural decoding algorithms are used to extract information encoded in their spiking activity. Bayesian decoding is one of the most used neural population decoding approaches to extract information from the ensemble spiking activity of rat hippocampal neurons. Recently it has been shown how Bayesian decoding can be implemented without the intermediate step of sorting spike waveforms into groups of single units. Here we extend the approach in order to make it suitable for online encoding/decoding scenarios that require real-time decoding such as brain-machine interfaces. We propose an online algorithm for the Bayesian decoding that reduces the time required for decoding neural populations, resulting in a real-time capable decoding framework. More specifically, we improve the speed of the probability density estimation step, which is the most essential and the most expensive computation of the spike-sorting-less decoding process, by developing a kernel density compression algorithm. In contrary to existing online kernel compression techniques, rather than optimizing for the minimum estimation error caused by kernels compression, the proposed method compresses kernels on the basis of the distance between the merging component and its most similar neighbor. Thus, without costly optimization, the proposed method has very low compression latency with a small and manageable estimation error. In addition, the proposed bandwidth matching method for Gaussian kernels merging has an interesting mathematical property whereby optimization in the estimation of the probability density function can be performed efficiently, resulting in a faster decoding speed. We successfully applied the proposed kernel compression algorithm to the Bayesian decoding framework to reconstruct positions of a freelymoving rat from hippocampal unsorted spikes, with significant improvements in the decoding speed and acceptable
منابع مشابه
Bayesian decoding using unsorted spikes in the rat hippocampus.
A fundamental task in neuroscience is to understand how neural ensembles represent information. Population decoding is a useful tool to extract information from neuronal populations based on the ensemble spiking activity. We propose a novel Bayesian decoding paradigm to decode unsorted spikes in the rat hippocampus. Our approach uses a direct mapping between spike waveform features and covariat...
متن کاملفشرده سازی اطلاعات متغیر با زمان با استفاده از کد هافمن
Abstract: In this paper, we fit a function on probability density curve representing an information stream using artificial neural network . This methodology result is a specific function which represent a memorize able probability density curve . we then use the resulting function for information compression by Huffman algorithm . the difference between the proposed me then with the general me...
متن کاملInnovative Methodology Bayesian decoding using unsorted spikes in the rat hippocampus
Fabian Kloosterman, Stuart P. Layton, Zhe Chen, and Matthew A. Wilson Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts; NERF, Leuven, Belgium; imec, Leuven, Belgium; Laboratory of Biological Psychology, Department of Psychology, K...
متن کاملReal-Time Decoding of an Integrate and Fire Encoder
Neuronal encoding models range from the detailed biophysically-based Hodgkin Huxley model, to the statistical linear time invariant model specifying firing rates in terms of the extrinsic signal. Decoding the former becomes intractable, while the latter does not adequately capture the nonlinearities present in the neuronal encoding system. For use in practical applications, we wish to record th...
متن کاملFast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation
Salient region detection has gained a great deal of attention in computer vision. It is useful for applications such as adaptive video/image compression, image segmentation, anomaly detection, image retrieval, etc. In this paper, we study saliency detection using a center-surround approach. The proposed method is based on estimating saliency of local feature contrast in a Bayesian framework. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 94 شماره
صفحات -
تاریخ انتشار 2016